随着物联网技术的快速发展,在各个行业中产生了不同的结果。长春成套设备小编介绍物联网进入了工业领域,被叫作工业物联网(IIoT),它正在给传统自动化设备带来全新的变革,同时也为设备厂商创造更多的增值机会。
作为物联网的一个子集,工业物联网为运营技术(包括远程管理和运营分析)增加了新的功能。到目前为止,工业物联网最大的价值在于预测性维护,新型物联网设备收集了大量的生产数据,再通过机器学习和人工智能分析,从而让管理者更好地理解生产系统是如何工作和维护的。
预测性维护是提前维护的最佳办法,当分析到工业设备的组件可能出现故障时,设备管理者就可以预先维护,以便在进行维修之前可以对其进行更换或修理,从而避免更高成本的损坏和停机时间。预测性维护融合大数据、机器学习等多项技术,为人与机器互动交流提供了机会。
要预测出一套设备的可能性故障,除了从设备数据中整理出关键的指标,还要结合更多的历史事件进行分析,最终形成一个与设备对应预测性维护模型。预测性维护的复杂性在于这套基于机器学习的生产系统模型必需随着时间而改变。
以火车的维护为例,随着火车零件的老化,它们对压力的反应与新的时候不同。因此,维护计划应该随着时间的推移进行调整,以考虑不断变化的故障率,这些时间表可以使用机器学习输出新的模型。
设备在全生命周期的不同阶段有着不同的表现,设备故障有一个“浴缸曲线”的说法,把设备寿命划分为三个主要阶段:早期故障率阶段、稳定状态阶段和损耗阶段。通常机器在使用寿命开始时,会经常出现故障。但随着时间的推移会进入稳定期,维护过程会逐渐消失,故障更为罕见。而到了后期机器故障会率会飙升,最终报废。
机器学习模式管理设备将对一些重型工业领域产生重大影响,例如物流运输、装备制造、汽车等,这对于一些低利润高资本的领域十分有价值。因为设备的故障维修不仅让用户支付昂贵的费用,停机可能使得企业失去更多创造产能的机会。预测性维护方案很好解决了装备密集型产业的痛点,同时也开启了一个巨大的增值服务市场。
人工智能和机器学习算法的不断进步,对于大数据的分析将有很大的帮助。长春成套设备小编介绍物联网保证了设备数据的稳定获取,这些数据将存储到云端,然后通过机器学习进行分析,给设备管理者提供最好的运营策略。随着自动化设备的普及应用,预测性维护带来的经济价值将是巨大的。
下一篇:自动化机械设备基础知识